Calculation of massless Feynman integrals using harmonic sums

نویسنده

  • Stefan Bekavac
چکیده

A method for the evaluation of the ε-expansion of multi-loop massless Feynman integrals is introduced. This method is based on the Gegenbauer polynomial technique and the expansion of the Gamma function in terms of harmonic sums. Algorithms for the evaluation of nested and harmonic sums are used to reduce the expressions to get analytical or numerical results for the expansion coefficients. Methods to increase the precision of numerical results are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Sums, Polylogarithms, Special Numbers, and their Generalizations

In these introductory lectures we discuss classes of presently known nested sums, associated iterated integrals, and special constants which hierarchically appear in the evaluation of massless and massive Feynman diagrams at higher loops. These quantities are elements of stuffle and shuffle algebras implying algebraic relations being widely independent of the special quantities considered. They...

متن کامل

Feynman integrals and difference equations

We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ∗-fields. We test the implementaion of the Mathematica package Sigma on examples from recent higher order perturbati...

متن کامل

Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction

Abstract. A large class of Feynman integrals, like e.g., two-point parameter integrals with at most one mass and containing local operator insertions, can be transformed to multi-sums over hypergeometric expressions. In this survey article we present a difference field approach for symbolic summation that enables one to simplify such definite nested sums to indefinite nested sums. In particular...

متن کامل

Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers

A survey is given on mathematical structures which emerge in multi-loop Feynman diagrams. These are multiply nested sums, and, associated to them by an inverse Mellin transform, specific iterated integrals. Both classes lead to sets of special numbers. Starting with harmonic sums and polylogarithms we discuss recent extensions of these quantities as cyclotomic, generalized (cyclotomic), and bin...

متن کامل

Structural relations of harmonic sums and Mellin transforms up to weight w=5

We derive the structural relations between the Mellin transforms of weighted Nielsen integrals emerging in the calculation of massless or massive single–scale quantities in QED and QCD, such as anomalous dimensions and Wilson coefficients, and other hard scattering cross sections depending on a single scale. The set of all multiple harmonic sums up to weight five cover the sums needed in the ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2006